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Abstract This paper describes the evolution of our method Encoplot for au-
tomatic plagiarism detection and the results of the participation to the PAN’11
competition. The main novelties are the introduction of a new similarity measure
and of a new ranking method, which cooperate to rank much better the source–
suspicious document pairs when selecting the candidates for the detailed analysis
phase. We have obtained excellent results in the competition, ranking 1st on the
manually paraphrased cases, 2nd overall in the external plagiarism detection task,
and getting the best recall on the non-translated corpus.

1 Introduction

Encoplot is an automatic method for plagiarism detection developed by the authors. It
was first introduced in the PAN’09 competition, where it has outperformed all other
competing methods [4]. It has been since then enhanced, parallelized and used also for
detecting the direction of plagiarism [6].

For this year’s competition a new similarity measure for the candidate documents
retrieval phase has been introduced, aiming to increase the quality of the ranking and
implicitly allowing for an increased recall. Apart from the improvement of the recall,
this new similarity measure increases the consistency of the encoplot method, the same
strategy being now used both in the candidate documents retrieval phase and in the
detailed analysis phase, making thus more probable that a correct find in the first phase
will not be missed by the second phase and the other way around.

2 Methods

2.1 Encoplot

The complete details of the basic system and optimized C-language code can be found
in [4], therefore we just sketch here briefly the method’s main ideas and steps, focusing
more on the novelties introduced this year.

Encoplot is both the name of the plagiarism detection system we have developed
and used, and the name of the pairwise document comparison algorithm at its core. For
the sake of completion, we describe these again here in full, marking also the changes
to the version described in [4], where optimized C-language code is included.
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Figure 1. Sample encoplot graph - here the same passage from the source is copied two times
into the destination, but not verbatim. The first copy captures most “dots“ (N-gram matches).

2.2 The Core Encoplot Algorithm for Comparing Two Documents

Input:

– A and B, two strings of length lA and respectively lB over some alphabet Σ.
– N , a natural number – the length of the N-grams.

Output:
E ⊆ {1 . . . lA} × {1 . . . lB}, such that:

– For each (u, v) ∈ E the N-grams A(u. . . u+N-1) and B(v. . . v+N-1) coincide.
– Each index appears at most once: (u, v) ∈ E, (u, v′) ∈ E ⇒ v = v′; (u, v) ∈
E, (u′, v) ∈ E ⇒ u = u′.

– For each N-gram w ∈ ΣN , let nw(A), nw(B) be the number of the occurrences
of w in A and B, respectively. Then |{(u, v) ∈ E;A(u . . . u + N − 1) = w}| =
min(nw(A), nw(B)), where |X| denotes the cardinal of the set X . Further more,
if aw(i)i=1...nwA are the ascendingly ordered positions on whichw occurs inA and
bw(i)i=1...nwB the ones forB, then (aw(i), bw(i)) ∈ E, for i = 1 . . .min(nw(A), nw(B)).

Algorithm:

1. Extract and sort the N-grams in A, let the result be denoted by SA ⊆ {1 . . . lA} ×
ΣN . The serial implementation produces a sorting index with a radix sort special-
ized in sorting N-grams.



2. Do the same for B, let the result be denoted by SB ⊆ {1 . . . lB} ×ΣN .
3. Intersect with a merging procedure the projections of SA and SB on their second

component, while reporting the values in the first component for the matches.

The outcome of this procedure is a set of pair of indices, the first in each pair being
an index in the first document and the second an index in the other document, such that
the N-gram starting at the positions indicated by the two indices coincide.

Note that the set produced by encoplot for two documents is a subset of the set pro-
duced by the well-known method dotplot [2]. The pairs it produces can be represented
graphically as dots, leading to a diagram which is never more cluttered than the one
produced by dotplot. For one example, see Figure 1. In contrast to the quadratic order
of the running time of dotplot, encoplot has linear running time (as a function of the
lengths of the documents). Note as well that no N-gram occurrence is ever matched to
more than one occurrence of the N-gram in the other document, and the occurrences
without matches in the other document are discarded.

2.3 The Clustering Heuristic

The heuristic employed for clustering the “dots” produced by the encoplot core algo-
rithm into passages consists of the following steps:

1. The dots are projected on the source’s axis, local contiguity is declared wherever
the distance between two consecutive projected dots is less than 4, then this con-
tiguity is smoothed by convolution with a constant vector of size 16, in order to
approximate their density.

2. Within a Monte-Carlo optimization loop (20 attempts), a random starting position is
selected, among the projections of the dots on the axis corresponding to the source.

3. This start is treated like the seed of a segment which is extended to the left and to
the right as much as possible, while keeping the density of the projections in the
segment over a certain limit (50%).

4. If the segment is long enough (512 characters) and the projections within it are
dense enough (50%), the dots having projections inside the segment are isolated,
their projections on the axis of the suspicious document are pruned of outliers.

5. If the segment on the axis of the source and the segment on the axis of the suspicious
document satisfies certain sanity checks (their lengths over 256 and the density of
the projections of the dots above 50%), the pair of segments (passages) is selected
as a candidate.

6. The best candidate (the one with longest passages found in correspondence) is re-
ported if it satisfies the checks mentioned at the previous step, otherwise the current
attempt is labeled as a failure.

7. The dots selected are removed from the set and the Monte-Carlo loop is resumed,
up to 30 times. Three consecutive failures to find an acceptable match of passages
lead to an early stop of the algorithm.

2.4 The Encoplot Plagiarism Detection System

A run of the whole system consists in the following steps:



1. Preprocess the text, text normalization (including translation when needed).
2. Compute a similarity matrix with one value for each (source document, suspicious

document) pair.
3. Rank the document pairs based on their similarity.
4. Analyze the highest ranked pairs in detail, with the following sub-steps:

– Apply the core encoplot algorithm described above on the two texts and obtain
the encoplot data.

– Cluster the matches of N-grams into matches of passages, using the heuristic
algorithm described above.

2.5 Changes to the system

For preprocessing the texts, we have first converted the documents from Unicode UTF-
8 to LATIN-1 character set. Then we partly translated some of the German and Spanish
documents into English using “Google translate”. We couldn’t translate everything, as
we were already too close to the deadline and Google translate kept refusing the re-
quests. Afterwards, the texts were normalized by changing all letters to lowercase and
compacting all white-spaces groups to a single space. Translation and text normaliza-
tion are new for our system.

For selecting the candidate pairs for detailed analysis, we have introduced both a
new similarity measure and a new ranking method.

The previous similarity measure was computed with a standard string kernel, the
normalized version of a kernel that computed how many distinct N-grams (N=16 char-
acters) each two documents share. The new similarity measure leverages the ideas of
core encoplot algorithm, by computing the encoplot set for the pair of documents of
which the similarity is evaluated, followed by a projection of it on the source axis, and
a counting of in how many positions a moving window of fixed size (256 characters)
contains a number of N-grams matches above a fixed threshold (64). This count is taken
to be the similarity of the two documents.

Once the similarity measure matrix is obtained (11093x11093 in this case), we
need to rank the pairs based on those values. In the previous years we have consid-
ered and contrasted ranking all sources for a given suspicious document and ranking
all suspicious documents for a given source. Which one is best depends much on the
specific dataset ([5]), therefore we have decided to combine the two rankings in a sin-
gle ranking that guarantees that whichever pair was selected by either one of those,
will be selected by the combined ranking as well. For this we built the min rank-
ing rmin(pair) = min(rsources(pair), rsuspicious(pair)), where rsources(pair) is the
rank of the pair in its column in the similarity matrix and rsuspicious(pair) is its rank
in the row containing it in the same matrix.

The detailed analysis remained almost unchanged, still we have had to do a change
related to a serious problem the 2010 competition corpus had, namely some of the
passages from the source were copied multiple times into the destination suspicious
document – a substantial amount: out of 55723 external plagiarism instances, 10694
(> 19%) had the multiplicity at least 2, 3483 multiplicity at least 3. The maximum
multiplicity of a single passage was 17 (!).



This probably explains our suspiciously low recall in the 2010 competition on the
non-obfuscated cases (and other subcorpora). As a side effect of the speed and space
optimizations the core encoplot algorithm offers over dotplot, for the simple case when
there is no obfuscation at all and just verbatim copying multiple times, only the first
copy of a passage is matched. For the example in Figure 1 the copying isn’t verbatim,
therefore a small proportion of the matches are shifted to the second copy. To understand
why, remember that each position in the source is paired with at most one position in the
suspicious document. Therefore a full match of the source passage fully “consumes“ it,
and it cannot match any of the subsequent copies. Having a second copy of the same
passage in the source would allow for a second match and so on. To cope with that,
we have concatenated each source with itself 4 times before analyzing the pair in detail
with our heuristic, creating thus 4 copies in the source of each passage previously there.
The number 4 has been chosen as a compromise in order to balance the effort and the
expected increase in recall. This change has had the undesirable effect of increasing the
running time and has raised thus the sparsity requirements for the candidate selection
procedure.

2.6 Implementation Details

Software infrastructure We have used C, C++, Perl, Shell scripts and Octave under
Linux.

For parallelizing the computation of the similarity matrix we have switched from
OpenMP to the framework StarSs [8], developed at the Barcelona Supercomputing
Center (BSC). The precise implementation we have used was SMPSs [7], meant for
multi-core machines. The advantage of this task-based parallelization framework is
that with simple annotations, tasks can be defined that are executed then in parallel
on different execution threads. The necessary tasks dependency detection, locking and
thread-to-thread communication and data transfers are performed automatically by the
framework. We have developed this version of the code during a HPC Europa2 virtual
visit to the BSC, where the first author had the chance to work together on this with Je-
sus Labarta, Rosa M. Badia and Aislan Gomide Foina and to run the code on machines
with up to 256 cores (article in preparation).

Hardware We have used three systems, not simultaneously:

– A 12-core machine: 2xAMD 6-core Opteron 2427 64bit 2200 MHz in our multi-
core lab. Unfortunately it became defective before we finished the analysis of the
data.

– A Condor [12] cluster: up to 34 cores (shared) AMD Opteron 275 at 2200MHz
– A 4-core machine: 1x4-core Intel Xeon E5540 at 2.53 GHz, as a replacement for

the no longer available 12-core machine.

Implementation tricks/techniques The text normalization used in the preprocessing
phase, as well as the translation require matching the positions in the transformed doc-
uments back into the original texts. For this we have kept index files, which mapped



each position in each transformed text to the corresponding position in the original text.
Our first implementations were either too slow or using too much memory in the lookup
phase, therefore we have optimized the implementation by choosing to keep the indices
in fixed record length binary format files and consulting those directly on the disk, us-
ing the function “seek”, without explicitly loading the whole content of the mapping
files into the memory, and letting thus the Linux operating system employ optimally the
various buffers and caches.

Processing time Translation was prohibitively slow, and we have not have enough time
for it (just 48h). Other preprocessing took less than 1 hour on the 12-core machine. The
computation of the similarity matrix took 24h on the same machine. Ranking takes a
few minutes. The detailed analysis would have taken 3 full days on the 12 core machine
therefore we have moved it on the cluster, where it took 24h. We chose not to use for
translating the extra week offered as prolongation – after we have submitted – as we are
interested more in the pure external plagiarism detection and consider the translation a
separate problem (see the Discussion section for more).

3 Evaluation

3.1 Dataset
This year’s competition test data consisted of 11093 source documents in English, Ger-
man (about 500) and Spanish (about 200).

There were 49621 plagiarism cases (passages copied with or without translation/obfuscation).
The distribution of their types is given in Table 1.

Table 1. The structure of the competition dataset - plagiarism cases

Category Subcategory Count
Entire set 49,621
Simulated 4,609
Artificial 39,870

no obfuscation 976
low obfuscation 19,779
high obfuscation 19,115

Translated 5,142
by hand 433
automatic 4,709

For our pairwise document matching approach it is interesting to note that this
amounts to more than 120 million document pairs to investigate and requires thus very
efficient implementation. At document level, out of all these pairs only 17674 contained
plagiarism cases.

3.2 Analysis and Results
As our method consists of two distinct phases, ranking the document pairs followed by
detailed analysis of the selected ones, it is useful to measure the performance in each
phase, in order to be able to contrast the alternative approaches.
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Figure 2. Comparative recall at document level on the 2010 competition corpus of the newly
introduced encoplot similarity measure and of the two ranking variants we have employed in
2010, based on a standard string kernel. The encoplot similarity measure graph ends when all
document pairs with non-null similarity values are included.

The purpose of the ranking is to identify the pairs of documents for which there is a
high chance that there is at least one plagiated passage from the source to the suspicious
document. An ideal ranking should put first the pairs where such a relation exists and
last the other pairs. A good ranking should be an approximation of this. It should enable
the achievement of a good recall at document level without having to select too many
document pairs. Note that all rankings (even a random one) will achieve a recall of
100%, the latest after selecting all pairs. What is important is how fast the recall is
increasing when the selection is extended to include more and more of the document
pairs, as ranked.

For examining the performance of the ranking, we have considered two types of
graphs: effort versus recall – where the recall is shown together with the number of
pairs needed to achieve that recall – and a standard precision versus recall.
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Figure 3. Comparative recall at document level on the 2011 competition corpus of the encoplot
similarity measure and of the best ranking variant for the standard string kernel. The encoplot
similarity measure graph ends when all document pairs with non-null similarity values are in-
cluded.

On the 2010 competition data, the effect of the new similarity ranking is impressive.
Both on the “effort versus recall” plots (Figure 2) and in the “precision versus recall”
plots (Figure 4), the new similarity method outperforms the standard one consistently
by a great margin.

On the 2011 competition data, while it still dominates in the “affordable effort”
range, it is eventually outperformed by the standard kernel coupled with min rank, Fig-
ure 3.

3.3 Results

The results on the 2011 competition data are summarized in Table 2.
Our team has ranked 2nd on the external plagiarism detection task.
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Figure 4. Precision-Recall plots for several ranking types for the standard and the encoplot based
similarity measures.

We have had the best score among all teams on the category that mimics best the
real human plagiarism: manual paraphrasing. Also we have had the best recall values
on manual paraphrasing and on both subcategories of automatic paraphrasing.

By using the annotations provided we have been able to compute for all teams the
recall on the non-translated cases subcorpus. We lead also there, with 0.3512, followed
by the team that ranked first with 0.3468. It was impossible to compute the precision on
the same subcorpus without having access to the answer files of the other teams.

We have tested the new method also on the 2010 competition data, on which it
had a plagdet score 0.72, with recall 66% and precision 86%. These results are very
encouraging, they would have ranked our method on the second place, without even
handling the translated cases (14%) - whereas the team which ranked first in 2010 did
handle those too.



Table 2. Results on 2011 Competition Data

Subset Recall Precision F-score Granularity Plagdet score
Entire corpus 0.34 0.81 0.48 1.22 0.42
No paraphrasing 0.90 0.84 0.86 1.02 0.85
Manual paraphrasing 0.36 0.96 0.53 1.06 0.50
Automatic paraphrasing
low obfuscation

0.58 0.90 0.71 1.27 0.60

Automatic paraphrasing
high obfuscation

0.08 0.64 0.14 1.19 0.13

Manual translation 0.08 0.25 0.12 1.01 0.12
Automatic translation 0.23 0.40 0.29 1.07 0.28

4 Discussion

The distribution of the plagiarism types in this year’s test data is far from matching
their distribution in the training corpus, PAN-PC-10 [10]. Most notably, the amount of
passages copied without changes (no obfuscation, no translation) was heavily reduced,
from 40% to less than 2%. Therefore, tuning on the training corpus could have been
to the disadvantage of the participants. We were consistent with our previous approach
of not tuning our method to a particular and still mostly artificial training corpus. This
may explain to some extent our top performance in the cases of human plagiarism,
which is indeed the only one of practical interest. We expect that the next corpora will
contain more and more such human and manually simulated plagiarism to the detriment
of the artificially generated using questionable choices (see the repeated insertion of the
same passage from one source into a single destination suspicious document mentioned
above).

4.1 The Issue with the Translation

In our view, automatic translation is a rather separate problem in NLP. Of course, there
could exist an approach to cross-language plagiarism detection that doesn’t bring first
all texts to the same language by automatic translation, but we are not aware of any
such approach with good performance either in the competitions so far, or in the existing
literature. The idea to translate first, followed by the same language plagiarism detection
is neither a scientific contribution, nor a distinguishing feature for a plagiarism detection
system.

Assuming thus that everyone tackling the cross-language plagiarism detection uses
automatic translation, the choice and the flaws of the later bring randomness into the
evaluation of the pure plagiarism detection methods. For example, using the very same
translation engine employed when building the corpus does artificially inflate the scores
of the teams who happened to employ the same engine.

As most of the translation used in the dataset was automatic, even when a com-
petitor would have had the resources to use high quality human translation of all the
sources that were not in English (a daunting task!), the resulting mismatch between this
translation and the fairly poor automatic translation will resemble a heavy obfuscation,
making the actual plagiarism detection task only more difficult.

We have tested several translation engines for the same language, and their (very
frequent) translation mistakes rarely matched.



The dependence on online translation services with unknown future availability is
not a good design idea. As already known, Google has announced closing down its on-
line translation service. Looking for alternatives, we have tested two desktop translation
engines, OpenLogos [11] for German and Apertium [3] for Spanish. Unfortunately they
were slow and not very accurate.

A telling example of how much increase in obfuscation is to be expected when
mismatching the translation engine can be seen by examining alternative translations
for the first paragraph of source document 10796:

“Mit Rücksicht auf den von uns klar erkannten Charakter des Originales des Pa-
pyrus als eines sehr ungenauen Collegienheftes, dessen Rechnungen ebensosehr wie
die vorkommenden Zeichnungen von der Mittelmässigkeit seines Zusammenstellers
beredtes Zeugniss ablegen, zweifeln wir keinen Augenblick, dass die fragliche Figur
ein rechtwinkliges Dreieck vorzustellen hatte.”

Openlogos: “Taking into consideration the character of the original clearly recog-
nized by us of papyrus as a very inexact Collegienheftes whose calculations just as much
as the occurring drawings of the Mittelmässigkeit of its/his Zusammenstellers beredtes
Zeugniss take off we doubt no moment that the figure in question had to present a
rectangular triangle.”

Google translate: “With regard to the best of our clearly recognized character of
the original of the papyrus as a very inaccurate Colleges issue, put the bills as much as
occur drawings of the mediocrity of his co-Tellers eloquent testimony, we doubt for a
moment that the relevant figure was imagining a right triangle.”

Yahoo Babelfish: “Out of consideration on by us clearly recognized the character of
the original of the papyrus as a very inaccurate Collegienheftes, its calculations likewise
very much like the occurring designs of the mediocrity of its Zusammenstellers eloquent
things-eat placings, doubt we no instant that the questionable figure had to present a
right-angled triangle.”

4.2 The issue with the Granularity correction in the Plagdet score

The granularity has been introduced for plagiarism detection in [9]. It was meant to
correct the standard F-score for excessive splitting of the plagiarized passages retrieved.
It is an ad-hoc correction that divides the F-score by log2(1+granularity). In our view,
it exhibits unwanted behavior in certain cases. For example, let’s assume we compare
with plagdet two methods, one having recall 33.33%, precision 100% and granularity
1 with another method having both precision and recall 100% and granularity 3. The
two methods will obtain the very same plagdet score, 0.5, as a result of applying the
granularity correction, although the second method is obviously to be preferred. It has
100% recall and precision, it finds everything and nothing more and even the splitting is
very far from excessive. No user will ever prefer a software that fails to find two thirds
of the cases to a software that finds them all and even displays each as one block (when
colouring text blocks, the adjacent parts will visually join).

More thought should be spent in finding a reasonable plagiarism detection score.



4.3 Interesting Examples

As part of our analysis we have searched for examples where the similarity measure
malfunctioned. One such example is (source 4314, suspicious 202) for which similarity
value computed was among the top ones, although the pair should contain no plagiarism
cases.

We have found that both texts are authored by Thomas Aquinas and seem to be
both part of “Summa Theologica”, sharing the topics and exhibiting a very constrained
and formal language. The detailed analysis found no matches between the two docu-
ments, but it’s still interesting that our similarity measure captured the link between
those documents.

5 Conclusion

In this paper the newest changes to the plagiarism detection method Encoplot have
been presented, as well as the results in the competition PAN’11. The main change was
replacing the standard, kernel based pairwise document similarity measure by a new
similarity measure that includes some of the encoplot core ideas. We have shown that
this new similarity measure is to be preferred when only a small part of the whole set of
document pairs can be analyzed in detail, as the recall at document level increases much
faster with the here proposed similarity measure. The results in the competition were
excellent, our team obtained the best scores for the manual paraphrasing subcorpus and
ranked 2nd overall on the external plagiarism detection task, obtaining also the best
recall on the subcorpus of non-translated plagiarism cases.

Acknowledgment: The parallelization of Encoplot has been performed under the
HPC-EUROPA2 project (project number: 228398) with the support of the European
Commission - Capacities Area - Research Infrastructures.
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