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Abstract: In this paper we describe a new general plagiarism detection method,
that we used in our winning entry to the 1st International Competition on Plagia-
rism Detection, the external plagiarism detection task, which assumes the source
documents are available. In the first phase of our method, a matrix of kernel values
is computed, which gives a similarity value based on n-grams between each source
and each suspicious document. In the second phase, each promising pair is further
investigated, in order to extract the precise positions and lengths of the subtexts
that have been copied and maybe obfuscated – using encoplot, a novel linear time
pairwise sequence matching technique. We solved the significant computational chal-
lenges arising from having to compare millions of document pairs by using a library
developed by our group mainly for use in network security tools. The performance
achieved is comparing more than 49 million pairs of documents in 12 hours on a
single computer. The results in the challenge were very good, we outperformed all
other methods.
Keywords: n-gram, plagiarism detection, network security, challenge

1 Introduction

Many methods have been developed for pla-
giarism detection, especially for the exter-
nal plagiarism analysis, which consists in
finding passages in the suspicious documents
which have been plagiarized and the corre-
sponding text passages in the source doc-
uments. Almost all these methods handle
the text at word level. Various compar-
ison units have been employed in plagia-
rism detection methods. Entire documents
are compared in (Lyon, Barrett, and Mal-
colm, 2004). Sentences from suspicious docu-
ments are compared to sentences from refer-
ence documents in (Kang, Gelbukh, and Han,
2006). Mixed-length comparisons in which
suspicious sentences are compared with entire
reference documents were used in (Barrón-
Cedeño and Rosso, 2009; Barrón-Cedeño,
Rosso, and Bened́ı, 2009). Irrespective of the
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comparison unit used, all methods of plagia-
rism detection need a similarity measure to
compare the text fragments corresponding to
the comparison unit. Most similarity mea-
sures used in plagiarism detection are based
on estimating the amount of common config-
urations of words. They differ by the config-
urations considered (n-grams, subsequences,
etc.) or by what words are used in compar-
isons (only words from the text fragments,
stemmed or not, synonyms from WordNet,
etc.). In (Lyon, Barrett, and Malcolm, 2004)
word trigrams are used to measure the sim-
ilarity between texts. The authors based
their choice of using word trigrams for plagia-
rism detection on the fact that the number of
common word trigrams in two independently
written texts (even if the text are on the same
topic) must be low given the Zipfian distribu-
tion of words. Also in (Barrón-Cedeño and
Rosso, 2009) it is reported that using word bi-
grams and trigrams led to best results in their
experiments. In order to address the prob-



lem of rewording in plagiarism, PPChecker
(Kang, Gelbukh, and Han, 2006) is based on
a special designed similarity measure, that
takes into account also the synonyms (ob-
tained from the WordNet) of the words in the
suspicious sentences. Some of the most elab-
orate similarity measures used in plagiarism
detection are described in (Bao et al., 2003;
Bao et al., 2004a; Bao et al., 2004b). These
measures are derived from the string kernel,
a kernel type successfully used in text cate-
gorization (Lodhi et al., 2002). The string
kernel works at character level, although in
(Bao et al., 2003; Bao et al., 2004a; Bao et
al., 2004b) it is extended to work at word
level, comparing two semantic sequences ac-
cording to their common words and position
information.

Using words is natural in text analysis
tasks like text categorization (by topic), au-
thorship identification and plagiarism detec-
tion. Perharps surprisingly, recent results
proved that methods that handle the text at
character level can also be very effective in
text analysis tasks. In (Lodhi et al., 2002)
string kernels were used for document cat-
egorization with very good results. Trying
to explain why treating documents as sym-
bol sequences and using string kernels ob-
tained such good results the authors suppose
that: ”the [string] kernel is performing some-
thing similar to stemming, hence providing
semantic links between words that the word
kernel must view as distinct”. String ker-
nels were also successfully used in authorship
identification (Sanderson and Guenter, 2006;
Popescu and Dinu, 2007). A possible reason
for the success of string kernels in author-
ship identification is given in (Popescu and
Dinu, 2007): ”the similarity of two strings as
it is measured by string kernels reflects the
similarity of the two texts as it is given by
the short words (2-5 characters) which usu-
ally are function words, but also takes into
account other morphemes like suffixes (’ing’
for example) which also can be good indica-
tors of the author’s style”1

For plagiarism detection, the only ap-
proach that handles the text at character
level that we are aware of is in (Bao, Lyon,
and Lane, 2006), for Chinese, and there is
justified by the difficulties of the Chinese lan-

1the string kernel used in (Popescu and Dinu,
2007) takes into account substrings of length up to
5 characters.

guage (word segmentation).
There is a strong connection between the

research in NLP and the research in computer
network security. In recent years, network se-
curity research started to approach the prob-
lem of detecting automatically unknown at-
tacks as soon as they reach the targeted sys-
tem. These attacks may follow the syntax
but try to exploit the semantics of the net-
work communication between the client and
the server applications, in order to gain ac-
cess over the attacked computer or at least
to prevent it from working normally. The
communication process defined by the appli-
cation layer protocols – e.g. HTTP, FTP,
RPC or IMAP – can also be considered as a
text-based communication in an artificial lan-
guage. The idea of payload analysis, which
treats the data as sequences of bytes has
been explored in detail (Kruegel, Toth, and
Kirda, 2002; Wang and Stolfo, 2004; Rieck
and Laskov, 2006; Wang, Parekh, and Stolfo,
2006; Rieck and Laskov, 2007). As the focus
in this field shifted towards applying more
advanced machine learning methods, gener-
alizing the extraction and representation of
the features has increased much the flexibil-
ity in defining similarity measures between
sequential data, in a security context. The
work (Rieck and Laskov, 2008) presents an
efficient way to combine features extracted
from byte sequences, e.g. words or n-grams
with arbitrary n value, for a wide range of
linear and non-linear similarity measures.

Graphics methods in comparing sequences
have been used in many fields, mostly un-
der the name dotplot – see (Maizel and Lenk,
1981) for one of the first uses in biology
and (Church and Helfman, 1993) for uses in
source text comparison. Whereas very at-
tractive for exploratory data analysis, build-
ing this graphic is potentially quadratic in
time and space. Also it tends to be noisy,
by showing many irrelevant coincidences be-
tween the sequences compared. Even with
these limitations, the method has been ap-
plied to source code, videos, music, protein
and other biological sequences, with various
ways to filter the noisy graphics and to handle
the problem of the potential quadratic size.
We improve on this technique by deriving our
own, linear space, linear time technique, that
we named the encoplot, short for “eN-gram
COincidence PLOT”. It is fully described in
Section 2.3, with code in Appendix 1.



Our plagiarism detection method can be
described as a combination of techniques
from many fields: it is character n-gram
based. It leverages a very efficient network
security software to compute the matrices
of kernel values. It uses the very fast en-
coplot algorithm and processes the encoplot
data in a quantitative fashion to solve what
can be seen as a rudimentary machine vision
or a specialized 2-dimensional data cluster-
ing task, in order to identify the matching
text passages for a given document pair, as
explained thoroughly below.

In what follows, the dataset specifics and
the time performance figures refer to the
dataset of the 1st International Competi-
tion on Plagiarism Detection, external pla-
giarism detection task (Webis at Bauhaus-
Universität Weimar and NLEL at Universi-
dad Politécnica de Valencia, 2009). The de-
velopment corpus of this dataset contained
about 7000 source documents and 7000 sus-
picious ones, with the plagiarism generated
automatically with various degrees of obfus-
cation (permutations, words deleted, inserted
or replaced by synonyms or antonyms) and
annotated. The competition corpus had the
same characteristics (different documents)
and the annotation was missing.

2 Methods

Our approach consists of two main phases.
In the first phase, a matrix of string ker-
nel values is computed, which gives a sim-
ilarity value between each source and each
suspicious document. Then, for each source,
the possible “destinations” (suspicious docu-
ments) are ranked based on their similarity
level with the current source, in decreasing
order. In the second phase, each promising
pair is further investigated, in order to ex-
tract the precise positions and lengths of the
subtexts that have been copied and maybe
obfuscated by the random plagiarist. In the
end we do a supplementary filtering that in-
creases the precision with the price of de-
creasing the recall.

2.1 Selecting a kernel and
computing the matrix of
kernel values for a large set of
documents

Based on the work of (Rieck and Laskov,
2008), a C library for sequential data, lib-
mindy, has been implemented by our net-

distance function d(x,y)

Minkowski k

√∑
ng∈An

|φng(x) − φng(y)|k

Canberra
∑

ng∈An

|φng(x)−φng(y)|
φng(x)+φng(y)

kernel function k(x,y)

linear kernel
∑

ng∈An
φng(x) · φng(y)

RBF kernel exp(−
∑

ng∈An
||φng(x)−φng(y)||2

2σ2 )

Table 1: Distances and kernels functions for sequen-
tial data.

work security research group. It has been
developed mainly for being used in build-
ing real-time network analysis tools at packet
level, as part of network intrusion detection
and prevention systems. It can map byte
sequences to a vectorial n-gram representa-
tion, such that the similarity between two
byte sequences can be expressed in terms of
distance and kernel functions on those rep-
resentations. The n-gram extraction set of
feasible byte sequences is given by An = Σn,
where Σ is the alphabet (in our case the
whole ASCII–8 set). The n-gram embed-
ding function φ for a byte sequence x is
then defined as φ(x) = (φng(x))ng∈An with
φng(x) = emb(x, ng), where the dimension
of the vector φ(x) is |An|. The function
emb(x, ng) returns either the frequency, the
count or the presence bit for a n-gram ng in
x. With the embedding function φ fixed, one
can compute a pairwise similarity value for
the vectorial representations of two byte se-
quences. Table 1 presents a selection of the
implemented distances and similarity mea-
sures that we could have used (where x and
y are arbitrary byte sequences).

Experiments with a very small subset of
only 5 documents and our previous experi-
ence in string kernels led us to use the linear
kernel over a representation where every n-
gram present is marked by 1 and every other
is marked by 0 (ignoring thus the frequencies
of the n-grams). The kernel was normalized,
such as K(x, x) = 1 for any string x. For the
length of the n-grams we used 16 characters.
Although in our estimations 18 should have
been better (closer to three times the average
word length plus two separators), the speed-
up of the software used can only be obtained
up to n-grams of length 16, see below and Ap-
pendix 1 for details. Using windows of two
to three words in plagiarism detection was



found to be the best choice by (Lyon, Barrett,
and Malcolm, 2004) and (Barrón-Cedeño and
Rosso, 2009).

The computation of a matrix of kernel val-
ues with sizes as large as 7000 is computa-
tionally intensive. There are more than 49
million pairs of documents for which the ker-
nel value has to be computed, in each of
the two datasets, the development and the
competition corpus, accounting for a total of
more than 98 million pairs to consider. lib-
mindy has had already a tool for building a
(symmetric) kernel matrix for a set of docu-
ments. We extended this tool for being able
to handle asymmetric matrices of kernel val-
ues, where the kernel values are computed for
each x ∈ X and y ∈ Y , where X and Y are
two independent finite sets of files, not nec-
essarily having the same cardinal. While the
new tool could in principle perform the task
fast enough, it would have needed an amount
of RAM of about 400 GB for a kernel based
on length 16 n-grams. To avoid this issue,
we partitioned the matrix of kernel values in
blocks of sizes up to 1000x1000 (1 million
pairs in most blocks), which required only
8 to 10 GB of RAM for processing. Those
64 blocks per dataset we processed one after
the other, but the processing of each block
was fully parallelized on the 8 cores of the
machine, as a result of internally distribut-
ing the tasks by the means of OpenMP pro-
gramming. Processing a full dataset took 12
hours on the machine we used (Dell Preci-
sion T7400). Although we had access to a
cluster, it offered only a 32-bit environment.
This would have slowed the whole process-
ing by a factor that would almost completely
eliminated the advantage of having 8 to 12
times more computing cores, and this is why
we decided to use a single multi-core com-
puter.

2.2 Pruning of the pairs

If the total processing for one pair of docu-
ments (up to book length level) would only
take one second, this would lead to a total
computation time of more than three years!
Even by successfully parallelizing this task
and dividing the time by hopefully 8 (the
number of computing cores), the time needed
would have been more than 4 months. It
was obvious that even with the matrix of
kernel values computed, there is too much
work in comparing the documents in each
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Figure 1: Maximum achievable recall for different
pruning thresholds. Ranking the suspicious docu-
ments for each source leads consistently to better val-
ues than ranking the sources for each suspicious doc-
ument.

pair. Pruning was seen from the start as
a requirement, the question was what effect
will it have on limiting the performance that
can be achieved. We have considered rank-
ing the pairs such that the ones with most
chances of corresponding to plagiarism come
first. Ranking on the absolute values of the
kernel proved to work worst. Ranking for
each source the suspicious documents proved
to provide a consistent 10% advantage over
ranking for each suspicious document the
sources. Therefore, given also the values that
can be seen in the Figure 1, we decided to
limit our effort to the first 51 most promising
suspicious documents for each given source.

2.3 Comparing two documents -
The encoplot

With the maximum effort down to an esti-
mate of about 100 hours, assuming spending
in average a second per exhaustive document
comparison (with the hope of reducing it to
12 hours by multicore parallelism), we pro-
ceeded to search for a way to identify what
the documents have in common, if anything.
Essential to this was the visualization of the
coincidence pattern of n-grams between two
documents. This is a scatter plot of a sub-
list of the positions where both texts have
the same n-gram. We call this plot encoplot.
Plots computed for pairs in the development
corpus can be seen in Figures 2 and 3. All
these plots use documents in the development
dataset.

Related ideas (the “dotplot” graphs) exist
about visualizing the n-grams that two texts
(or sequences) share. The problem with those
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Figure 2: Encoplot for source #3094 and suspicious #9. Many plagiarism instances for the same document
pair. The shattered look of some comes from higher obfuscation. In red, the local contiguity score, scaled.
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Figure 3: Encoplot for source #134 and suspicious
#2499 – a real case of human (self) plagiarism.

is that the number of pairs can be quadratic
in the size of the documents. For megabytes
long texts, this can easily become computa-
tionally intractable. We solve this issue by
limiting ourselves to a sublist that is guar-
anteed to be no longer than the shortest of
the documents, and can be computed in lin-
ear time. The precise procedure we employed
starts by sorting virtually the sets of n-grams
for both documents to be compared. Then

these ordered sets of n-grams are compared
with a procedure that is derived from the pro-
cedure from merging two sorted lists. Every
time the smallest elements of the two lists dif-
fer, the smallest of them is dropped, without
producing any output. Every time the small-
est elements of the lists are equal, the pair of
positions on which this identical n-gram oc-
curs is being collected by outputting it to the
standard output. Code for this core proce-
dure is given in Appendix 1. Please note that
encoplot pairs the first instance of an n-gram
in one document with the first instance of the
same in the other document, the second one
with the second one and so on – as opposed
to the dotplot, wich pairs each instance with
each instance.

2.4 Heuristics used for separating
the copied subtexts

Once the encoplot data (the list of pairs of
indexes) is obtained, it is sorted by the value
of the first index in each pair, which corre-
sponds to the position in source of the com-
mon n-gram. From this list a local “contigu-
ity” score is derived by computing whether
there is simultaneously a small jump on both
indexes (sum of absolute jumps less than 4)
when going from a pair to the next pair, fol-
lowed by a smoothing by a convolution with
a constant vector of length 16. The contigu-



ity score for an encoplot is displayed in red in
Figures 2 and 2. Then a Monte Carlo opti-
mization procedure is called, not more than
30 times for each document pair, which in
10 attempts tries to find the largest group
from the current encoplot data. The start of
the group is decided randomly with uniform
distribution over the list of available pairs,
then the group is extended to left and right
such that the average contiguity score stays
above 0.5 and there are no jumps (skipped
portions) longer than 512 in any 16 steps.
After a group is obtained, it is checked to
have an average contiguity score of over 0.75
and a length of at least 256 characters. If
not, it is rejected as insignificant. If kept, it
is projected to the dimension of the indexes
that correspond to the suspicious document,
and only the compact core of it is preserved.
The compact core is obtained by sorting on
the suspicious document axis and eliminating
the outliers by starting from the group center
and extending it to left and right while the
skips are less than 256 positions. What re-
mains is projected back onto the source doc-
ument axis, obtaining thus an estimate of
the indexes whose convex hull define the two
subtexts corresponding to each other. This
candidate of a plagiarism instance is checked
once again, this time for a final length of at
least 256, for not having shrinked to less than
half with respect to the initial group length
and for the two subtexts not having sizes too
different (the absolute difference more than
half of the mean of the two lengths). This
subset of the encoplot data is removed, the
plagiarism instance is outputted if all tests
succeeded, and the procedure is repeated in
the search for more groups. If the group
found fails to satisfy the checks, it is deemed
as a failure. At three consecutive failures the
search is abandoned and the treatment of the
pair of documents is considered completed.
This decision may be risky, but accelerates
substantially this phase, as on very compli-
cated document pairs it can take minutes to
completely examine an involved pair. On the
other hand, for the actually unrelated doc-
uments this ends the investigation rapidly.
Technically, we have accelerated this process-
ing phase even more by running simultane-
ously up to 10 detailed examinations of doc-
ument pairs at a time, trying to balance the
processing power required and the disk la-
tency.

3 Results

We combined the best F-measure – the har-
monic mean of precision and recall – 0.6976
(the next competitor had 0.6192) with the
best granularity – lack of fragmentation in
detection of the plagiated passages – 1.0027
(the next best value was 1.0164), winning
thus the competition.

4 Discussion and Conclusions

The first question is whether our choice to
compare the documents in pairs was optimal.
Indexing based methods could be faster, by
eliminating the need for exhaustive pairwise
comparison of documents in a large corpus.
They function by first indexing the collection
of source documents and then searching for
parts of the suspicious documents in the in-
dex, as the system MOSS (Schleimer, Wilk-
erson, and Aiken, 2003) does. Such an in-
flexible approach cannot handle well obfus-
cation, as opposed to our approach. On the
other hand, flexible matching is an always-
current research topic in information retrieval
systems (Navarro, 2001), and this eventually
improves plagiarism detection as well. We
think that, whereas needing more computa-
tional effort, our approach had the chance
of producing better results. And, as a con-
sequence of using highly optimized network
analysis code, it did so in a reasonable time,
even when run on a single contemporary com-
puter, as opposed to a full cluster. One could
say that it was closer to being optimal in
terms of quality of the results, while still be-
ing acceptable in terms of running time.

A second question of interest is whether
our values for the hyperparameters of the
method are optimal for this dataset. The an-
swer is probably no, but maybe not far from
that. They have been chosen by educated
guess guided by the exploratory data analy-
sis, as opposed to blindly optimizing a cross-
validation towards the best (over)fitting.

The third interesting issue is the claim
of some experts that only the humans can
have very good results at spotting plagiarism
(Weber-Wulff, 2008). We think that, as far
as the ethics is concerned, a human must
look at the evidence before claiming a case
as one of plagiarism. And of course, text
understanding is still not within the reach
of artificial intelligence yet. On the other
hand, the claim that the only automatization
in plagiarism detection should limit to using



the one’s favorite search engine and searching
for paragraphs selected based on one’s intu-
ition is questionable. How would such an ex-
pert deal with 7000 documents up to a book
length? How long would it take to process
those by hand, even using a public search en-
gine? How long does it take one to read 7000
works/books? The need for automatization
seems evident, as it was to (Grozea, 2004)
when he had to grade 400 projects from 60
students in less than 24 hours. Crowdsourc-
ing could also be a possibility, but one needs
very big crowds for that (optimally quadratic
size, if using the same choice in the trade-
off between speed and quality as we chose).
Time is the key factor in plagiarism detec-
tion.

Given the very good results obtained by
our method it is worth asking – and fur-
ther investigating – whether using character
n-grams offers any advantage over using word
n-grams. First, let us note that our method
uses n-grams of 16 characters which in aver-
age2 correspond to word trigrams (the stan-
dard approach in plagiarism detection). It
may seem that (on average) the same infor-
mation is brought by 16 characters n-grams
and word trigrams. What differentiates the
two types of n-grams is in our opinion the fact
that character n-grams favor long words over
short ones, and when people copy text they
do that for the content words of the copied
text that tend to be longer than the func-
tional words (stop words) which are short.
For example: a common syntagmatic expres-
sion3 like ”as far as” will contribute with one
word trigram, but with none character 16-
gram. On the other hand, a sequence of
content words (worth being copied) like ”ed-
ucated guess guided” will contribute again
with only one word trigram, but with 6 char-
acter 16-grams.

Another item to discuss is how to balance
precision and recall in automatic plagiarism
detection systems. Given that a human is in
many cases the final link in the chain that
leads to the proof of plagiarism, the effort of
that human must be spared as much as pos-
sible. The accuse of plagiarism is so strong,
that it needs strong evidence. Both these
aspects recommend to balance the precision
and recall towards a high precision, even at

2The average word length in the corpus is 5.2
3Frequently and systematically co-occurring lexi-

cal items.

the expense of lowering the recall. This is
how we tuned our system’s parameters, in-
cluding but not limited to the last check-
ing phase. Of course, accurate comparison
of systems should take into account the en-
tire precision-recall curve. By plotting on the
same graph these curves for more systems,
one could easily see where is the best perfor-
mance region for each system and whether or
not one of the systems is overall better than
another system.

Related to the maximum achievable pre-
cision while keeping a fair recall is the is-
sue of the documents independence and of
the automatic plagiarism. The dataset con-
tains plagiarism built automatically and ran-
domly and only these borrowings between the
source documents and the suspicious docu-
ments had to be found. But the documents
were not independent enough: there are pairs
of documents with the same or almost the
same content, such as independent transla-
tions of “One Thousand and One Night” or
several Bible editions, authors doing heavy
reuse from their previous works (the so-called
self-plagiarism). These are interesting in two
ways: they are better examples of what the
human plagiarism is, so spotting those as re-
lated is very good. On the other hand, this
can be seen as unintended (by the organizers)
plagiarism, so any such pair reported will ac-
tually lower the precision score.

A very interesting issue is the asymmetry
of the ranking quality. Why is it 10% bet-
ter to rank all suspicious documents for any
fixed source instead of ranking all possible
sources for every fixed suspicious document,
as clearly seen in Figure 1? A possible source
of this asymmetry is that while it was guar-
anteed for each suspicious document that the
areas plagiated do not overlap, this was not
the case for the source documents, where the
areas plagiated could overlap. This asymme-
try deserves more investigation, being one of
the few glints of hope so far to tackling what
could be the biggest open problem in auto-
matic plagiarism detection, that is determin-
ing the direction of plagiarism in a pair of
documents – being able to indicate with con-
fidence which is the copy and which is the
original.

To conclude, by combining advanced soft-
ware engineering and effort-sparing heuristics
tuned using the novel visualization technique
encoplot, we have been able to achieve the top



placement in the final results, proving that
the interaction of NLP researchers with net-
works security researchers can lead to high-
performance NLP systems.
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A Appendix 1: Encoplot code

This appendix provides the listing of the im-
plementation of the encoplot algorithm. At
its core is a very fast implementation of

the radix sort algorithm for virtually sort-
ing the n-grams in a text without swapping
any memory blocks. It is a specialization of
the general radix sort algorithm. The key
part is avoiding to recompute the frequen-
cies at each step in the radix sort algorithm,
and relying instead on updating those incre-
mentally. Another key technical aspect is
the use of the 128 bit unsigned integer type
uint128 t, possible with the gcc compiler on

certain platforms, which allows for very good
speeds up to n-grams of length 16, on 64-
bit architectures, such as the common x86-64.
The main code uses this virtual sorting of the
n-grams sets to compute the encoplot data of
two given files, a central part of our plagia-
rism detection method, as explained above.
// computes the encop lot data o f a pa i r o f f i l e s
#inc lude ” s td i o . h”
#inc lude ” s t d l i b . h”
#inc lude ” s t r i n g . h”
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <unis td . h>
typede f u i n t 1 2 8 t tngram ;
//CrG r s o r t
#de f i n e f r (x , y ) f o r ( i n t x=0;x<y ; x++)

in t ∗ i ndex r so r t ngrams (
unsigned char ∗x , i n t l , i n t DEPTH){

i n t NN=l−DEPTH+1; i f (NN>0){
unsigned char ∗pin=x+NN;
unsigned char ∗pout=x ;
i n t ∗ i x=( in t ∗) mal loc (NN∗ s i z e o f ( i n t ) ) ;
i n t ∗ox=( in t ∗) mal loc (NN∗ s i z e o f ( i n t ) ) ;
const i n t RANGE=256;
i n t counter s [RANGE] ; i n t s t a r tpo s [RANGE] ;
f r ( i ,NN) ix [ i ]= i ;
// rad ix sort , the input i s x ,
// the output rank i s ix
f r (k ,RANGE) counter s [ k ]=0;
f r ( i ,NN) counter s [∗ ( x+i )]++;
f r ( j ,DEPTH){ i n t o f s=j ;// low endian

in t sp=0;
f r (k ,RANGE){ s t a r tpo s [ k]=sp ;

sp+=counter s [ k ] ; }
f r ( i ,NN){ unsigned char c=x [ o f s+ix [ i ] ] ;

ox [ s t a r tpo s [ c]++]= ix [ i ] ; }
memcpy( ix , ox ,NN∗ s i z e o f ( ix [ 0 ] ) ) ;
// update counter s
i f ( j<DEPTH−1){

counter s [∗ pout++]−−; counter s [∗ pin++]++;}}
f r e e ( ox ) ; r e turn ix ;}}
#de f i n e MAXBUFSIZ 8000123
unsigned char f i l e 1 [MAXBUFSIZ ] ;
unsigned char f i l e 2 [MAXBUFSIZ ] ;
i n t l1 , l 2 ;

i n l i n e tngram readat (
const unsigned char ∗buf , i n t poz ){
re turn ∗( tngram ∗ ) ( buf+poz ) ;}

i n t main ( i n t argc , char ∗∗ argv ){
i n t depth=s i z e o f ( tngram ) ;
FILE ∗ f 1=fopen ( argv [ 1 ] , ” rb ” ) ;
l 1=f r ead ( f i l e 1 , 1 ,MAXBUFSIZ, f1 ) ; f c l o s e ( f1 ) ;
FILE ∗ f 2=fopen ( argv [ 2 ] , ” rb ” ) ;
l 2=f r ead ( f i l e 2 , 1 ,MAXBUFSIZ, f2 ) ; f c l o s e ( f2 ) ;

// index the ngrams
in t ∗ ix1=index r so r t ngrams ( f i l e 1 , l1 , depth ) ;
i n t ∗ ix2=index r so r t ngrams ( f i l e 2 , l2 , depth ) ;
i n t i 1 =0; i n t i 2 =0;//merge
tngram s1=readat ( f i l e 1 , ix1 [ i 1 ] ) ;
tngram s2=readat ( f i l e 2 , ix2 [ i 2 ] ) ;
l1−=(depth −1); l2−=(depth −1);
whi le ( i1<l 1 && i2<l 2 ){
i f ( s1==s2 ){

p r i n t f (”%d %d\n” , ix1 [ i 1 ] , ix2 [ i 2 ] ) ;
i 1++; i f ( i1<l 1 ) s1=readat ( f i l e 1 , ix1 [ i 1 ] ) ;
i 2++; i f ( i2<l 2 ) s2=readat ( f i l e 2 , ix2 [ i 2 ] ) ; }

e l s e i f ( s1<s2 ){
i 1++; i f ( i1<l 1 ) s1=readat ( f i l e 1 , ix1 [ i 1 ] ) ; }

e l s e i f ( s2<s1 ){
i 2++; i f ( i2<l 2 ) s2=readat ( f i l e 2 , ix2 [ i 2 ] ) ; } }

f r e e ( ix2 ) ; f r e e ( ix1 ) ; r e turn 0 ;}


